

Features

- Operating voltage: 2.4V~4.0V
- On-chip SRAM
- Robot function
- Vibrato function
- 8kHz sampling rate
- 7-step level shifting

- 8-bit A/D and D/A converters
- LED indicator with voice level
- Push button selection or electronic mode
- Few external components required
- 16-pin/18-pin DIP package

- Applications
- Toys
- Mixers
- Recorders

General Description

The HT8950 is a single chip CMOS LSI voice modulator. It provides 7 steps to shift the frequency of an input voice, producing a dramatic change in the output.

The HT8950 provides two special effects: Vibrato and Robot. The Vibrato effect is generated by alternating the frequency of an input signal up and down at a rate of 8Hz. The Robot function, on the other hand, converts an input voice into a Robot voice. Both effects can be selected depending on which pin is triggered, either ROB or VIB. For the output frequency level shifting, the chip provides 7 steps which can be selected from the two

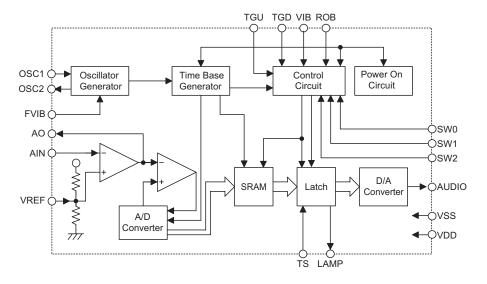
Audio system

- Speech system
- Telephone system

groups of pins namely, SW0, SW1 and SW2 for electronic direct selection and ROB, TGD, TGU and VIB for push button selection.

The HT8950 includes a built-in microphone amplifier with an internal bias, an 8-bit A/D converter, a built-in SRAM as well as a current output type 8-bit D/A converter. The 8-bit A/D and D/A converters with a sampling rate of 8kHz ensures a high quality and high S/N ratio output voice. The chip provides an LED indicator which flashes with the volume of the input voices. It is offered in a 16-pin or 18-pin DIP package.

Pin Assignment


		_	SW0	1	18 🗆 ROB
OSC1 🗆	1 1	16 🗆 OSC2	SW1	2	17 🗖 TGD
VIB 🗆	2 1	15 🗖 FVIB	SW2	3	16 🗖 TGU
TGU 🗆	3 1	14 🗖 TS	VSS 🗆	4	15 🗖 VIB
TGD 🗌	4 1	13 🗖 VREF	AO 🗆	5	14 🗅 OSC1
ROB 🗆	5 1		AIN 🗆	6	13 0SC2
VSS 🗆	6 1		VDD 🗆	7	12 🗖 FVIB
NC 🗆	7 1		LAMP 🗆	8	11 🗋 TS
AO 🗆	8	9 🗆 AIN	AUDIO 🗆	9	
	HT8950 - 16 DIP-	 A	I	HT895 - 18 DIF	

Unit: µm

Υ

Block Diagram

Pad

No.

Х

Pad Coordinates

		VIB	OSC1	OSC2	FVIB			
TGU	1	18	17	16	15		14	TS
TGD	2						13	VREF
ROB	3		♠					
SW0	4		(0,	0)				
SW1	5						12	AUDIO
SW2	6						11	LAMP
VSS	7	8	3	9		10		2, 1111
	<u>.</u>	Ş	5	AIN		VDD		

1	-957.0	720.5	10	732.0	-774.0
2	-957.0	423.5	11	984.0	-675.0
3	-957.0	210.0	12	956.5	-400.0
4	-957.0	-87.0	13	956.5	374.5
5	-957.0	-299.5	14	956.5	671.5
6	-957.0	-596.5	15	530.5	765.5
7	-962.0	-815.0	16	345.50	765.5
8	-161.5	-747.5	17	-33.50	765.5
9	200.5	-747.5	18	-287.50	765.5

Υ

Pad

No.

Х

Chip size: 2350×2080 $(\mu m)^2$

* The IC substrate should be connected to VSS in the PCB layout artwork.

Pin Name	I/O	Internal Connection	Description
SW0	Ι	Pull-High	Function setting pin (for electronic setting)
SW1	I	Pull-High	Function setting pin (for electronic setting)
SW2	I	Pull-High	Function setting pin (for electronic setting)
VSS	I	_	Negative power supply, ground
AO	0		Internal amplifier output
AIN	I		Internal amplifier input (inverted)
VDD	0		Positive power supply
	SW0 SW1 SW2 VSS AO AIN	SW0ISW1ISW2IVSSIAOOAINI	Pin NameI/OConnectionSW0IPull-HighSW1IPull-HighSW2IPull-HighVSSI—AOO—AINI—

Pin Description (18 Pin Version)

Pin No.	Pin Name	I/O	Internal Connection	Description
8	LAMP	0	NMOS Open Drain	Lamp output (brightness changes with voice volume)
9	AUDIO	0	PMOS Open Drain	Audio output
10	VREF	I		Internal amplifier reference voltage
11	TS	I		For IC test only
12	FVIB	0		Vibrato frequency control
13	OSC2	0		Oscillator output
14	OSC1	I		Oscillator input
15	VIB	I	Pull-High	Switch to Vibrato mode (toggle)
16	TGU	I	Pull-High	Switch to Upward step mode
17	TGD	Ι	Pull-High	Switch to Downward step mode (internal pull-high)
18	ROB	I	Pull-High	Switch to Robot mode (internal pull-high)

Absolute Maximum Ratings

Supply Voltage	V_{SS} –0.3V to V_{SS} +6V
Input Voltage	V _{SS} -0.3V to V _{DD} +0.3V

Storage Temperature	–50°C to 125°C
Operating Temperature	–20°C to 70°C

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Electrical Characteristics

Ta=25°C

0	Demonster		Test Conditions				
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	Unit
V _{DD}	Operating Voltage		_	2.4	3.0	4.0	V
I _{OP}	Operating Current	3V	No load, f _{OSC} =640kHz	_	2.0	10	mA
V _{IN}	Input Signal	3V		_	_	580	mV
I _{LAMP}	Lamp Sink Current	3V	V _{OL} =1.3V	5.0	9.5	_	mA
A _V	OPA Gain Value	3V	Open loop	_	2000	_	
I _O	Audio Output Voltage	3V	During silence	_	-1	_	mA
V _{IH}	High Input Voltage	_	_	0.7V _{DD}	_	_	V
V _{IL}	Low Input Voltage	_	_	_	_	0.3V _{DD}	V
f _{OSC}	Oscillating Frequency	3V	R _{OSC} =47kΩ	_	512	_	kHz

Functional Description

The HT8950 is a single chip LSI designed for voice modulation. It provides 7 steps to shift the frequency of an input voice signal up and down. The chip is also equipped with two special effects; Vibrato and Robot.

The HT8950 includes a built-in amplifier, 8-bit A/D converter and current output type of 8-bit D/A converter in addition to a built-in SRAM. The brightness of an LED indicator changes with the volume of the input voice signal.

Power on Initial

The HT8950 enters the Robot state right after power is initially switched on.

Robot State

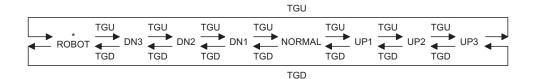
The system goes into the Robot state after the ROB pin is triggered or power is turned on. In this mode, an input voice can be converted into a robot voice.

Vibrato

An output voice will be generated with a vibrato effect when the VIB pin is triggered, regardless of what state the system is in. The vibrato effect is toggle activated. In other words, when a voice output is playing with a vibrato effect, this effect can be eliminated by retriggering the VIB pin. The rate of vibrato effect can be changed by adjusting the resistance of the external resistor between the OSC2 and FVIB pins.

Voice Modulation

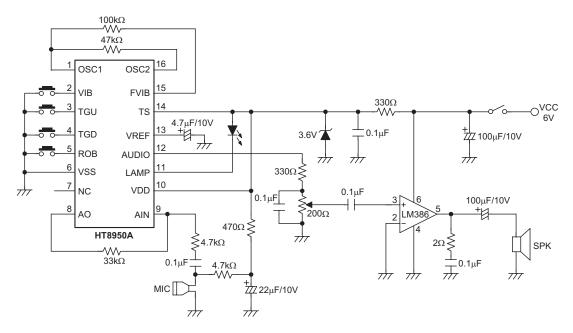
The HT8950 provides an 8-bit A/D and a D/A converters with a sampling rate of 8kHz, ensuring a voice output of high quality and with a high S/N ratio. The chip includes 7 steps to shift the frequency of an input signal. The voice modulation is selected and determined by the SW0~SW2 inputs.

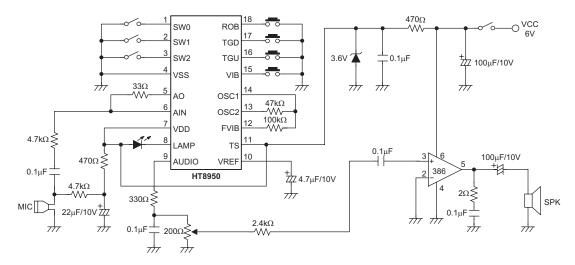

	Input		Stop Mode	Speed	
SW2	SW1	SW0	Step Mode	Ratio	
1	1	1	Controlled by TGU and TDG	Notes	
1	1	0	UP3	2	
1	0	1	UP2	8/5	
1	0	0	UP1	4/3	
0	1	1	NORMAL	1	
0	1	0	DN1	8/9	
0	0	1	DN2	4/5	
0	0	0	DN3	2/3	

Notes: The TGU switch elevates by one step mode, and the TGD switch, on the other hand, falls one step mode step by step as shown:

- The system changes to the Robot state after the ROB pin is triggered, regardless of what state the system is in.
- A voice output is accompanied with a vibrato effect after the VIB pin is triggered, regardless of what state the system is in.

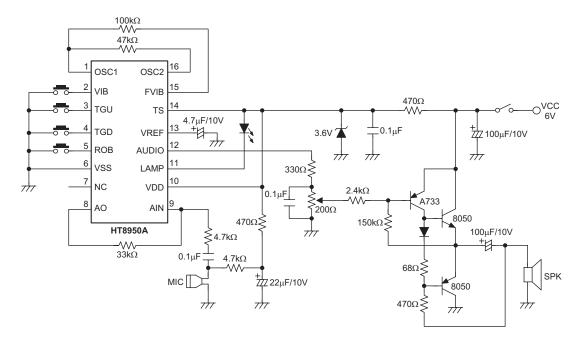
LED Indicator


The HT8950 provides a LAMP pin to drive an external LED. The brightness of LED changes with the volume of the input voice signal.

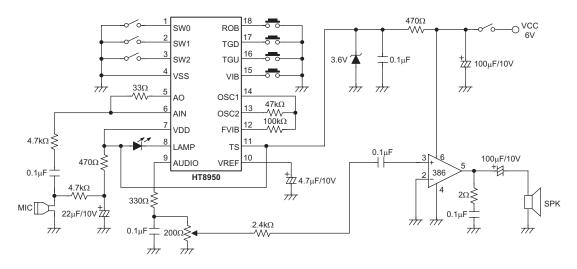


Application Circuits

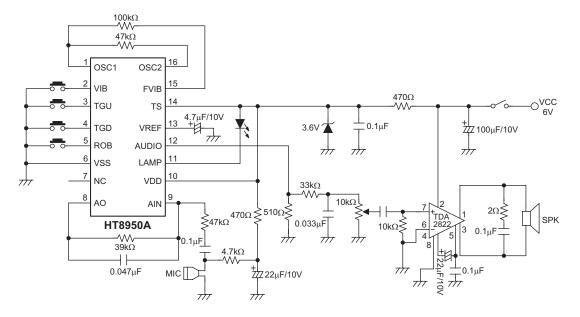
16-Pin Version with an LM386 Power Amplifier and a 6V Power Supply



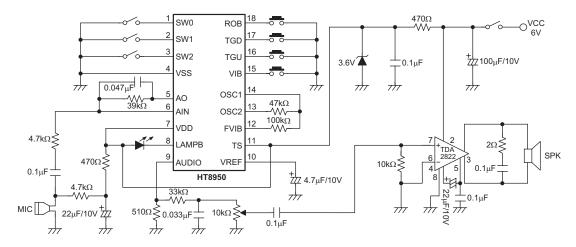
18-Pin Version with an LM386 Power Amplifier and a 6V Power Supply



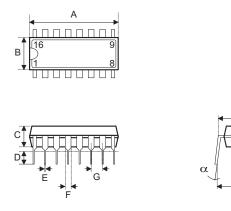
16-Pin Version with a Transistor Output Stage and a 6V Power Supply



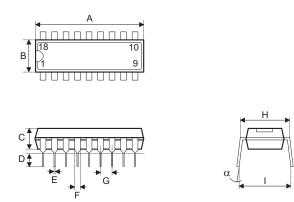
18-Pin Version with a Transistor Output Stage and a 6V Power Supply



16-Pin Version with a TDA2822 Power Amplifier and a 6V Power Supply


18-Pin Version with a TDA2822 Power Amplifier and a 6V Power Supply

Package Information


16-pin DIP (300mil) Outline Dimensions

Symbol	Dimensions in mil					
	Min.	Nom.	Max.			
A	745	—	775			
В	240	—	260			
С	125	_	135			
D	125	—	145			
E	16	_	20			
F	50	_	70			
G	_	100	—			
Н	295		315			
I	335	_	375			
α	0°		15°			

18-pin DIP (300mil) Outline Dimensions

Symbol	Dimensions in mil					
	Min.	Nom.	Max.			
А	895		915			
В	240	_	260			
С	125	_	135			
D	125		145			
E	16		20			
F	50		70			
G	_	100				
Н	295		315			
I	335		375			
α	0°		15°			

Holtek Semiconductor Inc. (Headquarters)

No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan Tel: 886-3-563-1999 Fax: 886-3-563-1189 http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)

4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan Tel: 886-2-2655-7070 Fax: 886-2-2655-7373 Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shanghai Sales Office)

7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China 200233 Tel: 021-6485-5560 Fax: 021-6485-0313 http://www.holtek.com.cn

Holtek Semiconductor Inc. (Shenzhen Sales Office) 43F, SEG Plaza, Shen Nan Zhong Road, Shenzhen, China 518031 Tel: 0755-8346-5589 Fax: 0755-8346-5590 ISDN: 0755-8346-5591

Holtek Semiconductor Inc. (Beijing Sales Office)

Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031 Tel: 010-6641-0030, 6641-7751, 6641-7752 Fax: 010-6641-0125

Holmate Semiconductor, Inc. (North America Sales Office)

46712 Fremont Blvd., Fremont, CA 94538 Tel: 510-252-9880 Fax: 510-252-9885 http://www.holmate.com

Copyright © 2003 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.