

Mercury System SB120

Neopixel Board - Product Datasheet

Author	Francesco Ficili		
Date	31/03/2018		
Status	Released		

Revision	Revision History				
Version	Date	Author	Changes		
1.0	31/03/2018	Francesco Ficili	Initial Release.		

SUMMARY

1.	INTRODUCTION	4
2.	BLOCK DIAGRAM	6
3.	HARDWARE	8
	PINOUTS	
Mer	cury Connector	. 9
Prog	grammer Connector	10
	pixel Channels Connectors	
	COMMAND SET	
	cific Command Set	
Exaı	mples	12
6.	TECHNICAL SPECIFICATIONS 1	4

1. Introduction

The Mercury System (MS in short) is a modular system for the development of connectivity and IoT applications. The system uses various type of electronic boards (logic unit, modems, slave board equipped with sensors and actuators, power boards...) and a complete SW framework to allow the realization of complex applications. Scalability, ease of use and modularity are key factors and are granted by the use of a heterogeneous set of components that allow to assemble the system like a construction made with LEGO© bricks.

The board set which composes the system is made up by the following "families":

- Base Board (BB): It's the "brain" of the system and contains the main logic unit as well as
 different communication buses and connector to interfaces the slaves. It also contains a simple
 power supply system and a recharge unit for a single LiPo cell (it can satisfy the power
 requirements of simpler systems). It can exist in different variants, depending on the employed
 microcontroller unit.
- Modem Board (MB): this one is the board that allow network connectivity. It can exist in different variant, depending on the network interface (GSM/GPRS, Wi-Fi, BT, Radio...). It's interfaced to the Base Board with a dedicated serial line.
- **Power Board (PB):** it's the board that allow to satisfy the particular power requirement of the system, when it's necessary. They can be vary depending on the particular power requirement to satisfy (high power, solar harvesting, piezo harvesting, etc.).
- Slave Board (SB): these are the system's peripherals, and they vary depending on the specific mounted sensor or actuator. Typical examples are SB with relay, temperature sensors, RGB LED controller, servo controller, accelerometer, etc. They communicate with the BB with I2C or UART and a dedicated command set.
- **Expansion Board (EB):** these are the board that allow planar connection of Mercury boards. There are variants which can contains Displays, battery socket, etc.
- **Brain-Less Board (BL):** these are the controller-less boards. They in general contain really simple sensor or actuators that don't need the bus interface. There are meant as an alternative to slave boards for cost-sensitive applications.

Slave Boards and Modem Board are provided pre-programmed with a FW which implements a dedicated command set for a high-level management of the boards, while the Base Boards are provided with a SW framework which provides all the low-level services (operative system, device drivers, system services, etc.), leaving to the user only the development of application level logic. Moreover, the Base Board comes with an USB bootloader, so it can be programmed without the need of a flashing device.

Figure 1 shows a typical system connection:

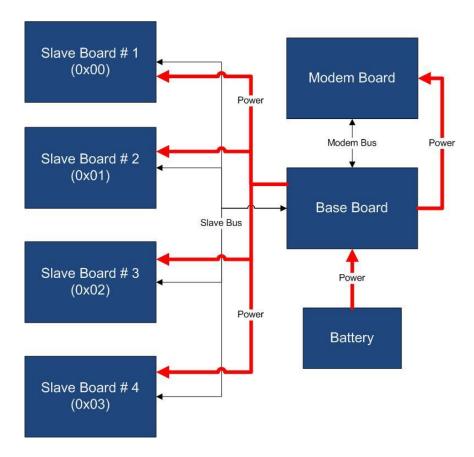


Figure 1 - Typical System Connection

Examples of application fields of MS are:

- Home automation System,
- IoT applications,
- Connectivity Applications,
- Monitoring and control Systems,
- Remote Control,
- Industrial Process control,
- Robotics applications,
- Test benches,
- Etc...

2. Block Diagram

The SB120 is a 3-channel Neopixel board, able to interface Neopixel LEDs strips or rings. Figure 2 shows the SB120 block diagram. The heart of the system is a PIC16F1829 8-bit RISC microcontroller, produced by Microchip Technology Inc.

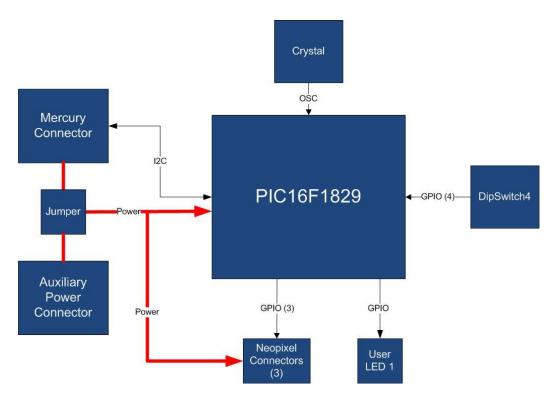


Figure 2 - Block Diagram

The main characteristics of the employed MCU are resumed in Table 1:

Table 1 - MCU characteristics

Parameter Name	Description
Program Memory Type	Flash
Program Memory (KB)	14
CPU Speed (MIPS)	8
RAM Bytes	1,024
Data EEPROM (bytes)	256
Digital Communication	1-UART, 1-A/E/USART, 1-SPI, 1-I2C1-MSSP(SPI/I2C)
Peripherals	
Capture/Compare/PWM	2 CCP, 2 ECCP
Peripherals	
Timers	4 x 8-bit, 1 x 16-bit
ADC	12 ch, 10-bit
Comparators	2
Temperature Range (C)	-40 to 125
Operating Voltage Range (V)	1.8 to 5.5

Pin Count	20
XLP	Yes

The SB120 is connected to a Mercury System Base Board by means of I2C bus. The address of the board could be dynamically set by means of a 4 positions dip switch, allowing up to 15 address values (address 0x00 is reserved for I2C general call broadcast addressing scheme). The Neopixel channels could be supplied by means of VddBat from Mercury System network or by means of an external power source (a jumper and a proper screw-terminal connector are provided for this purpose).

Table 2 resumes the SB120 board main characteristics:

Table 2 – Board Characteristics

Parameter	Description	Notes
Board Type	Slave Board (SB)	
Supported Bus	I2C	
Addressing	Dip Switch 4	
Peripheral Description	3 Neopixel Channels	

3. Hardware

This section goes deeper in the HW details of SB120. Figure 3 depicts the most important components of the board:

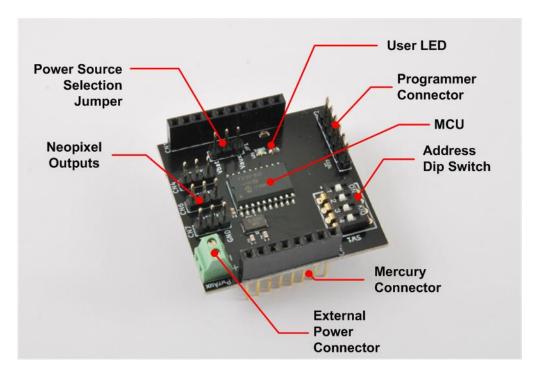


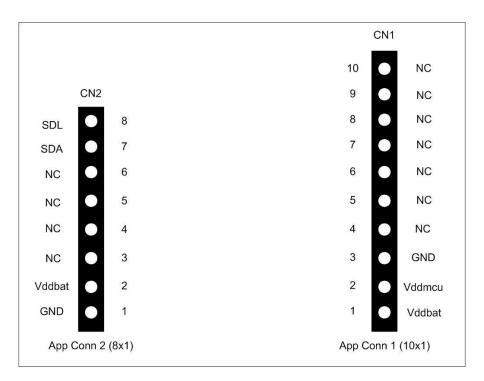
Figure 3 - Hardware Highlight

Table 3 provides a description of board's main components:

Table 3 – Hardware characteristics

Parameter Name	Description
User LED	Board User LED, by default it's configured as heartbeat LED
	(periodic pulses).
Neopixel Outputs	Neopixel channels connectors.
Mercury Connector	Mercury connector used to interface the board with the others MS
	boards.
Address Dip Switch	Dip Switch to set the address of the board within the Mercury
	System.
MCU	PIC16F1829 main controller board.
Programmer Connector	PicKit 3 Microchip Programmer/debugger connector. It is directly
	connected to the MCU debug port, in order to allow advanced
	debugging and programming features, if needed.
Power Source Sel. Jumper	Jumper to select between internal (VddBat) and externally
	provided power source for Neopixel Channels.
External Power Connector	Screw-terminal connector for external power source.

4. Pinouts


This section highlights the pinouts of SB120 connectors.

Mercury Connector

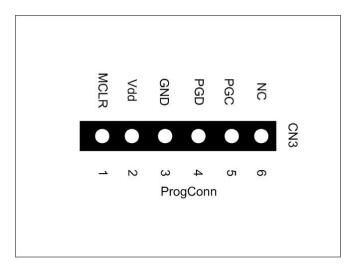
The Mercury Connector is the connector which interfaces the SB120 with the rest of Mercury System. The connector's pinout is depicted in Figure 4 and Table 4 explains the meaning of each single pin (NC stands for "Not Connected").

Table 4 - Mercury Connector Pinout

Pin Name	Pin Number	Description	
VddBat	CN1 - 1	This pin is connected to the main power source.	
	CN2 – 2		
VddMcu	CN1 – 2	This pin is connected to MCU regulated positive voltage	
		reference (3,3V).	
GND	CN1 – 3	This pin is connected to the board reference voltage.	
	CN2 – 1		
SDA	CN2 – 7	This pin is connected to I2C SDA line (Data Line).	
SCL	CN2 – 8	This pin is connected to I2C SCL line (Clock Line).	

TOP VIEW

Figure 4 - SB120 Mercury Connector Pinout



Programmer Connector

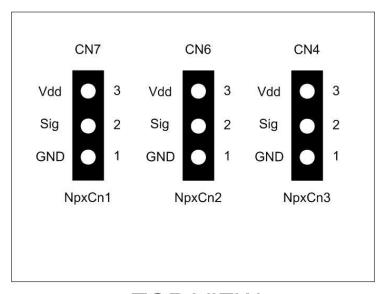
The Programmer Connector is the connector which allows to re-program the SB120 using Microchip Technology ICSP (In-Circuit Serial Programming) interface. The connector's pinout is depicted in Figure 5 and Table 5 explains the meaning of each single pin (NC stands for "Not Connected").

Table 5 - Programmer Connector Pinout

Pin Name	Pin Number	Description		
MCLR	CN3 – 1	Microcontroller Master Clear (RESET) pin.		
Vdd	CN3 – 2	Positive power supply reference.		
GND	CN3 – 3	Power ground.		
PGD	CN3 – 4	Program Data pin.		
PGC	CN3 – 5	Program Clock pin.		

TOP VIEW

Figure 5 - SB120 Programmer Connector Pinout


Neopixel Channels Connectors

The Neopixel Connectors interface the SB120 to Neopixel's strips or rings. The connector's pinout is depicted in Figure 6 and Table 6 explains the meaning of each single pin.

Table 6 - Neopixel Connectors pinout

Pin Name	Pin Number	Description		
GND	CN7, 6, 4 – 1	Power ground.		
Sig	CN7, 6, 4 – 2	Neopixel signal.		
Vdd	CN7, 6, 4 – 3	Positive power supply voltage.		

TOP VIEW

Figure 6 - SB120 Neopixel Connectors pinout

5. Command Set

Specific Command Set

The SB120 board supports both the MS Generic Command Set (see document MS_GenericCommandSet) and a set of specific commands (also called Specific Command Set).

Table 7 lists the SB120 Specific Command Set:

Table 7 - Command Set

Code	Cmd Name	Parameters	Description		
0x50	CH1 Write Pixel	PixelSts (1 byte)	Write CH1 Neopixels basing on pixel numbe and pixel color set (1 = ON, 0 = OFF).		
0x51	CH1 Set Pixel Color	Green (1 byte) Red (1 byte) Blue (1 byte)	Set primary tri-color for CH1 (in order, green-red-blue).		
0x52	CH1 Set Pixel Number	Pixel Number (1 byte)	Set the Neopixel LED number for CH1 (max = 100).		
0x53	CH2 Write Pixel	PixelSts (1 byte)	Write CH2 Neopixels basing on pixel number and pixel color set (1 = ON, 0 = OFF).		
0x54	CH2 Set Pixel Color	Green (1 byte) Red (1 byte) Blue (1 byte)	Set primary tri-color for CH2 (in order, green-red-blue).		
0x55	CH2 Set Pixel Number	Pixel Number (1 byte)	Set the Neopixel LED number for CH2 (max = 100).		
0x56	CH3 Write Pixel	PixelSts (1 byte)	Write CH3 Neopixels basing on pixel number and pixel color set (1 = ON, 0 = OFF).		
0x57	CH3 Set Pixel Color	Green (1 byte) Red (1 byte) Blue (1 byte)	Set primary tri-color for CH3 (in order, green-red-blue).		
0x58	CH3 Set Pixel Number	Pixel Number (1 byte)	Set the Neopixel LED number for CH3 (max = 100).		

Examples

Some examples of Specific Command Set usage are listed below:

- 1) Set full Green for CH1 Neopixels: [0x51] [0xFF] [0x00] [0x00]
- 2) Set full Red for CH1 Neopixels: [0x51] [0x00] [0xFF] [0x00]
- 3) Set full Blue for CH1 Neopixels: [0x51] [0x00] [0x00] [0xFF]
- 4) Set CH1 Neopixel number to 10: [0x52] [0x0A]
- 5) Set CH2 Neopixel number to 5: [0x55] [0x05]
- 6) Turn on CH1 Neopixels: [0x50] [0x01]
- 7) Turn off CH1 Neopixels: [0x50] [0x00]

Note: all Neopixel channels start from no color (0x00,0x00,0x00) and Neopixel number equal to 1, so the user has to adjust color scheme and LEDs number for each channel after startup.

6. Technical Specifications

Table 8 resumes the board technical specifications:

Table 8 - Board Technical Specifications

Parameter	Max	Тур	Min	Unit	Notes
Supply Voltage	3.6	3.3	2.0	V	
Current Cons. (Normal)		10		uA	
Current Cons. (Peak)		1		mA	
Current Cons. (Low Power)		100		nA	
Startup Time		100		mS	