Mercury System

Framework User
Manual

IoT and Connectivity Made Simple

Francesco Ficili
31/12/2018

jﬂéli RCURY

Mercury System — Framework User Manual

Revision Log

Author Major Minor Description
Francesco Ficili | 31/12/2018 1 0 Initial Release for Framework version 1.0.0.

Chapter: Introduction

N

~@ERCURY

Mercury System — Framework User Manual

SUMMARY
1. INTRODUCTION.....cctteuiiiiiitttteeiiiiititetteeeieitiieeesessssiestieessssssssssitesssssssssssstessssssssssssteesssssssssssseesssssssssssseesssnsssssns 4
2. WHAT THE MERCURY SYSTEM FRAMEWORK IS......cccittiiuiiiiiiiiiiiiniiiiniiiniiisisiiinssssssssssiisssssssssssissssssssssssnnes 5
FRAMEWORK DESCRIPTIONteutiutetestestteueeutententessestesueeseessensenseseeasesseeseessensenseseeasesaeeseestestentenseabesbeebeeseentensensenbesaesbesneensensens 5
THE FRAMEWORK FUNCTIONALITIES .vuvtuteuteutessetessesuesueeneensensesessessessesseensensensessessessesseensensensessessessesseensensensessessessesseseensensans 6
3. THE SYSTEM CONFIGURATION FILE (SYS_CFG.H) ..cccoorrunrriiiiiiiisnsnnneeniiiisssssnseesssmssssssssessssssssssssnsssssssssssssanssssssssss 8
4. PML (PERIPHERAL MANAGEMENT LAYER)......ccccctetteieecssssnneessessssssssnnnesssssssssssnnsssssssssssssnnsesssssssssssnnsssssssssssssnnnsans 9
IVIODEM STACKS . veuteeteueeuteuteeentestesuesuteueeusessetesseshesueeseeuse s ensesaeabesbeeheeseentenbeseeebeeheeheeaeenteabenbebesbeebeeatentenbenbenbesaeebeeneensentens 9
WWVIFI IMIODEM STACK .vvvteutetetestesteeseestessessetessessesseaseessessensessessesseessessensensessensesssssesssessensensensessessessesssessensensessessessessesnsensenes 9
BT IVIODEM STACK ...t ttetteuteutetentertesteetteuteutensesbesueebeeseeueeasensebesaeebeebeeheeasenseatesaeebeeheeh e eatemtembeseeebeebeebeeaeenb e be st e ebesbeebeeneensenee 16
GSIVI/GPRS IMIODEM STACK ..cuvveeitveeeueeeitreeeseeessseeesseesseeeseessseseseesasesesesssesesesssessseesntesensessnsesssesssesensessntessssessssesensesenes 17
17 O Yol PP UPP U OPPUPURTOPPRE 20
UART STACK eiiiiiiiiiiiititieeetteteeteeeeteeeeetetee et eeet ittt s eeete s et et et et et et et et et et et et et atetetetesetetetetetetetetetererererererereterereterererererererererererenens 22
LU] 2 PSP PP PPPPTN 23
5 SSL (SYSTEM SERVICE LAYERY) ...ccciiiruetiiissunnnisssunsssssssssssssssesssasssssssasssssssssssssssnssssssanssss 24
11 5 TSP UPP U PPPUPPPTTOPPRE 24
RTCIM ettt ettt e e e s r et et e e e s e a et e e e s e s e e et e e et e s e et e e e e s e s a et et e e e s rne e e e e e e sesnaraee 26
) 4] PSSP PPTT YR PPPPPPPTPRTRPINE 29
TERIM ettt et et e e e st e e e e s a et e et e e et e e e s e s a et e e e e e se et et et e e se e reeereeeseans 31
6. OSL (OPERATIVE SYSTEM LAYER)....ceetiiiiiiiinnneeniiiiisssssnneessssssssssssssessssssssssnssssssssssssssnssessssssssssnsssssssssssssannsasssssss 32
OS SERVICES ...veueeutentetetesteete et estesteste s st eheeae et e tesseebesbeehe e et eaeea b e sa e b e abeeh e eaeea e et e ne e b e eb e e bt eae et e s e ne e b e sbeeb e et et e beneeebesbeeneennennen 32
L L I PP 34
OS ALARMS ..ttt ettt ettt e e e s ettt e e e s e s s e et e e e s e s s b e et e e e e e e s s e e et et e e e s e e r et et e e e se R r e e et et e e e e b ar et e e e e e s rrnnreeeas 37

Chapter: Introduction

~@ERCURY

Mercury System — Framework User Manual

1. Introduction

This manual provides a complete reference guide to the Mercury System Framework. For a
complete description of what the Mercury System (MS in short), what you can do with the system
and other getting started information please refer to the document MS_GettingStartedGuide. This
manual will go deeper in details into the Mercury System Framework (MSF in short) which is the
SW framework for the development of applications using Mercury System.

Chapter: Introduction

D

jﬂgli RCURY

Mercury System — Framework User Manual

2. What the Mercury System Framework is

The Mercury System (MS in short) is a modular system for the development of connectivity and
loT applications. The system uses various type of electronic boards (logic unit, modems, slave
boards equipped with sensors and actuators, power boards...) and a complete SW framework to
allow the realization of complex applications. Scalability, ease of use and modularity are key
factors and are allowed by the use of a heterogeneous set of components that allow to assemble
the system like a construction made with LEGO® bricks.

Framework Description

The Mercury System Framework (MSF) is a layered SW framework specifically designed to support
application development with Mercury System. It provides to the user a complete set of base
functionalities to easily interface MS Slave Boards (SB) and Modem Boards (MB) as well as some
infrastructural and system services. Figure 1 shows the layered Architecture of the MSF.

User Applications

App#1 App#2 App#3 App#n

Mercury SML

Mercury
SSL Mercury PML
Mercury

OSL

Mercury HAL

Mercury Framework

Mercury Hardware

Figure 1 - Mercury System Framework Architecture

The framework is made up by the following components:

HAL (Hardware Abstraction Layer): the purpose of this layer is to abstract the HW dependencies
to the upper layers.

Chapter: What the Mercury System Framework is

j@li RCURY

Mercury System — Framework User Manual

SML (System Management Layer): the purpose of this layer is to provide services for the
management of communication buses (I12C, UART) and for the management of Mercury System’s
Modem Board (WiFi, BT, GSM/GPRS). It also provides a set of System Services, like System Power
Management, RTCC, USB terminal, etc. It’s divided in two main components:

e PML: Peripheral Management Layer,

e SSL: System Services Layer.

OSL (Operative System Layer): this layer is made up by a lightweight RTOS that provides basic
services to the system, like scheduling tables for the various tasks, Events, SW Timers, Alarms,
etc...

The Framework Functionalities

The Mercury System Framework provide a broad set of functionalities that helps the user in the
developing of applications. The management of all buses and Modem communication stacks is
provided along with services for the handling of the most useful microcontroller internal
peripheral (RTCC, ADC, USB, Power Management, etc.). Moreover, a simple real time OS
implementation with services likes schedule tables, SW timers, alarms, etc. is provided.

As shown in Figure 2, the user has to implement only the high-level application logic and schedule a
period function to implement his own application:

User Applications

I Mercury SML

4
g | Mercury
0] SSL

% Mercury

|

Mercury PML

Mercury HAL

Figure 2 - Example of user application positioning inside the MSF

(@)

Chapter: What the Mercury System Framework is

jmgli RCURY

Mercury System — Framework User Manual

To get more information about features and compatibility of you MSF release, please check the
MSF release notes (MS_FrameworkReleaseNotes_vx.x.x).

The Framework Version referenced by this manual is:

Item \ Major Minor Fix
MSF (Mercury System Framework) 1 0 0

~N

Chapter: What the Mercury System Framework is

Mercury System — Framework User Manual

iﬂi ERCURY

3. The System Configuration File (sys_cfg.h)

The MSF needs some basic static configuration to be set by the user, like the type of the modem

used, the periodicity of the application, enable/disable status of certain modules, etc. These

configurations are all stored in the file sys_cfg.h and this file must exist for each user application

implemented using the MSF.

The list of relevant configurations is depicted in Table 1:

Cfg Parameter Name
USB_STS

Possible Values
STD_OFF
STD_ON

Description
Enabling/disabling of USB device stack.

USB_CLASS_USED

USB_CLASS_CDC
USB_CLASS_HID

USB class to use.

TERM_TASK_STS

STD_OFF
STD_ON

Enabling/disabling of system terminal.

WIFI_MODULE

STD_ESP8266_MODULE
UPANEL_MODULE

WiFi module type (standard ESP
module or uPanel option).

APP_TASK_STS

STD_OFF
STD_ON

Enabling/disabling of user application
task (must be enabled to run the user

app).

APP_TASK_SYMB

Valid function pointer

Name of the user function.

APP_TASK_PERIOD_MS

1to 65535

Period of the user task in ms.

MODEM_USED

NO_MDM
GSM_GPRS_MDM
BT_MDM
WIFI_MDM

Type of modem to use.

Table 1 - Sys_Cfg config parameter list

Chapter: The System Configuration File (sys_cfg.h)

(0]

~@ERCURY

Mercury System — Framework User Manual

4. PML (Peripheral Management Layer)

The Peripheral Management Layer (or PML in short) is the MSF layer used to manage external
peripheral through the Base Board communication channels. These peripherals are:

e Various types of Modem Board through the serial line on Mercury Modem Connector,
e Various types of Slave Boards (both on SBs or EBs) through I12C or serial lines o Mercury
Slave Connector.

For the management of the Modem Boards, various complete stacks have been developed (one
for each existing MB) and other will be added in the future. For the management of Slave devices
on the Mercury Bus a complete 12C and UART stacks have been developed.

In addition to this the layer provides also the management of USB device stack.

Modem Stacks

Currently the following Modem Stacks are available on MSF:

e Wifi Modem Stack (to be used with MB210),
e BT Modem Stack (to be used with MB310),
e GSM/GPRS Modem Stack (to be used with Futura GSM/GPRS modems, like FT1308M).

Wifi Modem Stack

The Wifi Modem Stack is used to interface the Mercury WiFi modems (as, for instance, the
MB210). The module provides API for the handling, association and creation of WiFi networks and
for the transmission and reception of TCP and UDP packages.

APl list:

MdmWifi_SendWifiMsg

Service Name MdmWifi_SendWifiMsg

Inputs UINT8* TxBuffer — Pointer to TX buffer

Outputs None

Description APl used to send an UART message to Wifi Modem, without providing message
lenght.

Usage Examples Send MyBuffer to Wifi Modem:

MdmWifi_SendWifiMsg(MyBuffer);

Notes None

O

Chapter: PML (Peripheral Management Layer)

Mercury System — Framework User Manual

~@ERCURY

MdmWifi_SendWifiMsgLen

Service Name

MdmWifi_SendWifiMsgLen

Inputs

UINT8* TxBuffer — Pointer to TX buffer
UINT8 DatalLenght — Length of data to transmit

Outputs

None

Description

APl used to send an UART message to Wifi Modem, providing message length.

Usage Examples

Send 10 bytes of MyBuffer to Wifi Modem:

MdmWifi_SendWifiMsg(MyBuffer,10);

Notes

None

MdmWifi_ReceiveWifiMsg

Service Name

MdmWifi_ReceiveWifiMsg

Inputs

UINT8* RxBuffer — Pointer to RX buffer
UINT8 DataLenght — Number of received data bytes

Outputs WifiMsg_NotReceived = No data received from modem
WifiMsg_Received = Some data received from modem
Description APl used to receive an UART message from WiFi Modem. If there are data

received from the modem, the API will copy the received data to the user RX
buffer (RxBuffer) provided and put also the number of bytes received on the
user provided storage variable (DataLenght).

Usage Examples

Receive and copy data on WifiRxBuffer:

If (MdmWifi_ReceiveWifiMsg(WifiRxBuffer,&RxDatalLen)) ==

WifiMsg_Received)

{
/* Do something */

}

Notes

This API is used internally by the MdmWifi module, so the user is discouraged
from using this APl in the user app implementation, unless not strictly
necessary.

MdmWifiCmd_RestartModem

Service Name

MdmWifiCmd_RestartModem

Inputs None
Outputs None
Description APl used to restart Wifi Modem.

Usage Examples

Restart modem:

MdmWifiCmd_RestartModem();

Chapter: PML (Peripheral Management Layer)

[HEY
o

~@ERCURY

Mercury System — Framework User Manual

Notes

None

MdmWifiCmd_SetWifiMode

Service Name

MdmWifiCmd_SetWifiMode

Inputs

UINT8 WifiMode — Possible values:
STATION_MODE,
SOFT_AP_MODE,
SOFT_AP_AND_STATION_MODE

Outputs

None

Description

APl used to set the modem wifi mode (1: Station, 2: SoftAP, 3: SoftAP + Station).

Usage Examples

Set the modem to SoftAp Mode:

MdmWifiCmd_SetWifiMode(SOFT_AP_MODE);

Notes

None

MdmWifiCmd_JoinAccessPoint

Service Name

MdmWifiCmd_JoinAccessPoint

Inputs

const UINT8 *AccessPoint
const UINT8 *Password

Outputs

None

Description

APl used to join an existing access point with provided password.

Usage Examples

Join the access point “MyWifiAP” with Pwd “0123456789":

MdmWifiCmd_JoinAccessPoint(“MyWifiAP”, “0123456789");

Notes

None

MdmWifiCmd_QuitAccessPoint

Service Name

MdmWifiCmd_QuitAccessPoint

Inputs None
Outputs None
Description APl used to quit a previously joined access point.

Usage Examples

Quit any previously joined AP:

MdmWifiCmd_QuitAccessPoint ();

Notes

None

Chapter: PML (Peripheral Management Layer)

[H
=

Mercury System — Framework User Manual

~@ERCURY

MdmWifiCmd_SetTransferMode

Service Name

MdmWifiCmd_SetTransferMode

Inputs

UINT8 Mode — Possible values:
TX_MODE_NORMAL
TX_MODE_UNVARNISHED

Outputs STD_OK - Transfer mode correctly set
STD_NOT_OK - Invalid mode requested
Description APl used to set the transmission mode (normal or unvarnished).

Usage Examples

Set tx mode to normal:

MdmWifiCmd_SetTransferMode(TX_MODE_NORMAL);

Notes

None

MdmWifiCmd_SetConnectionMode

Service Name

MdmWifiCmd_SetConnectionMode

Inputs

UINT8 Mode — Possible values:
CONN_MODE_SINGLE
CONN_MODE_MULTIPLE

Outputs STD_OK = Conn mode correctly set
STD_NOT_OK - Invalid mode requested
Description APl used to set the connection mode (single or multiple).

Usage Examples

Set Conn mode to Multiple:

MdmWifiCmd_SetConnectionMode(CONN_MODE_MULTIPLE);

Notes

None

MdmWifiCmd_StartConnection

Service Name

MdmWifiCmd_StartConnection

Inputs

UINT8 Mode — Possible values:
CONN_MODE_SINGLE
CONN_MODE_MULTIPLE
UINT8 Id — Connection ID: 0-4
UINT8 Type — Possible values:
PROTOCOL_UDP
PROTOCOL_TCP
UINT8 *Address — String with address of the Host to connect
UINT8 Port — Connection port

Outputs

None

Description

APl used to start a TCP or UDP connection.

Usage Examples

Start a TCP connection to the host “dweet.io” on port 80:

Chapter: PML (Peripheral Management Layer)

[HEY
N

~@ERCURY

Mercury System — Framework User Manual

MdmWifiCmd_StartConnection(CONN_MODE_MULTIPLE,O, PROTOCOL_TCP,
"dweet.io", 80);

Notes None

MdmWifiCmd_SendData

Service Name MdmWifiCmd_SendData

Inputs UINT8 Mode — Possible values:
CONN_MODE_SINGLE
CONN_MODE_MULTIPLE

UINT8 Id — Connection ID: 0-4

UINT8 Len — Length of data to send

UINT8 *Buffer — Pointer of the buffer to send

Outputs None
Description APl used to send a TCP or UDP packet.
Usage Examples Send the buffer Data of dimension Size on TCP or UDP channel:

MdmWifiCmd_SendData(CONN_MODE_MULTIPLE,O,Size,Data);

Notes None

MdmWifiCmd_ReceiveWifiMsg

Service Name MdmWifiCmd_ReceiveWifiMsg
Inputs UINT8* RxBuffer — Pointer to RX buffer
UINT8 DatalLenght — Number of received data bytes
Outputs WiFiRcv_DataNotReceived = No networkdata received
WiFiRcv_DataReceived = Some network data received
Description APl used to send a TCP or UDP packet.
Usage Examples Receive network data from TCP or UDP channel:

If (MdmWifiCmd_ReceiveWifiMsg(WifiRxBuffer,&RxDatalen)) ==
WiFiRcv_DataReceived)

{
/* Do something */

}

Notes None

MdmWifiCmd_CloseConnection

Service Name | MdmWifiCmd_CloseConnection

Chapter: PML (Peripheral Management Layer)

[HEY
w

Mercury System — Framework User Manual

~@ERCURY

Inputs UINT8 Mode — Possible values:
CONN_MODE_SINGLE
CONN_MODE_MULTIPLE
UINT8 Id — Connection ID: 0-4
Outputs None
Description APl used to close a connection

Usage Examples

Close connection of ID O:

MdmWifiCmd_CloseConnection(CONN_MODE_MULTIPLE,Q);

Notes

None

MdmWifiCmd_ConfigureSoftAPMode

Service Name

MdmWifiCmd_ConfigureSoftAPMode

Inputs

void* ssid — Service Set Identifier (Wifi Network Name)
void* pwd — Wifi Network access password

UINT8 chid — Channel ID

UINT8 enc — Encoding type, possible values:

ENC_OPEN
WPA_PSK
WPA2_PSK
WPA_WPA2_PSK
Outputs None
Description API used to configure the softAP.

Usage Examples

Create an AP named “Mercury”, on ch 5 with password WPA2 “1234567890".

MdmWifiCmd_ConfigureSoftAPMode("Mercury", "1234567890", 5,WPA2_PSK);

Notes

None

MdmWifiCmd_ConfigureSoftAPIpAddress

Service Name

MdmWifiCmd_ConfigureSoftAPIpAddress

Inputs void* ip — IP Address
Outputs None
Description APl used to configure the sofAP IP Address.

Usage Examples

Set IP Address of SoftAP to 192.168.1.1:

MdmWifiCmd_ConfigureSoftAPIpAddress("192.168.1.1");

Notes

None

Chapter: PML (Peripheral Management Layer)

[N
S

Mercury System — Framework User Manual

~@ERCURY

MdmWifiCmd_ConfigureServer

Service Name

MdmWifiCmd_ConfigureServer

Inputs

UINT8 Mode — Possible values:
DELETE_SERVER
CREATE_SERVER

UINT16 Port — Server port

Outputs STD_OK > Server correctly created/deleted
STD_NOT_OK -> Server not created/deleted
Description APl used to configure or delete a server.

Usage Examples

Create server on port 80:

MdmWifiCmd_ConfigureServer(CREATE_SERVER, 80);

Notes

None

Chapter: PML (Peripheral Management Layer)

[HEY
U

Mercury System — Framework User Manual

~@ERCURY

BT Modem Stack

The BT Modem Stack is used to interface the Mercury BT modems (as, for instance, the MB310).

The module provides API for the transmission and reception of BT packages and for the handling

of BT module.

APl list:

MdmBt_SendBtMsg

Service Name

MdmBt_SendBtMsg

Inputs UINT8* TxBuffer — Pointer to TX buffer

UINT8 DatalLenght — Length of data to transmit
Outputs None
Description APl used to send an message with BT Modem.

Usage Examples

Send the string “Hello” over BT:

MdmBt_SendBtMsg(“Hello”,5);

Notes

None

MdmBt_ReceiveBtMsg

Service Name

MdmBt_ReceiveBtMsg

Inputs UINT8* RxBuffer — Pointer to RX buffer
UINT8 DatalLenght — Number of received data bytes
Outputs BtMsg_NotReceived = No data received on BT
BtMsg_Received = Data received on BT
Description API used to receive a message from BT Modem.

Usage Examples

Receive and copy data on BtRxBuffer:

if (MdmBt_ReceiveBtMsg(BtRxBuffer,&RxDatalen)) == BtMsg_Received)

{
/* Do something */

}

Notes

None

Chapter: PML (Peripheral Management Layer)

[HEY
(O))

~@ERCURY

Mercury System — Framework User Manual

GSM/GPRS Modem Stack

The GSM/GPRS Modem Stack is used to interface Futura GSM/GPRS modules like the FT1308M
(based on SIM800 module). This module provides API for handling telephone calls, send and
receive SMS and manage the GPRS network.

APl list:

Mdm_PinUnlock

Service Name

Mdm_PinUnlock

Inputs const UINT8 *PIN — Pin to unlock the SIM
Outputs None
Description API to to unlock the SIM using PIN.

Usage Examples

Unlock with PIN “1234":

Mdm_PinUnlock(“1234");

Notes

None

Mdm_MakePhoneCall

Service Name

Mdm_MakePhoneCall

Inputs UINT8 *PhoneNumb
UINT8 PhoneNumbLen
Outputs None
Description APl to make a phone call to specific number.

Usage Examples

Make a phone call to the number “1234567890":

MakePhoneCall(“1234567890”, 10);

Notes

None

Mdm_HangPhoneCall

Service Name

Mdm_HangPhoneCall

Inputs None
Outputs None
Description API to close a phone call.

Usage Examples

Hang a phone call:

Mdm_HangPhoneCall();

Notes

None

Chapter: PML (Peripheral Management Layer)

[HEY
~N

Mercury System — Framework User Manual

~@ERCURY

Mdm_GetPhoneCall

Service Name

Mdm_GetPhoneCall

Inputs None
Outputs None
Description API to get a phone call

Usage Examples

Get a phone call:

Mdm_GetPhoneCall();

Notes None

Mdm_IsRinging

Service Name Mdm_IsRinging

Inputs None

Outputs PhoneNotRinging = Not ringing
PhoneRinging = Ringing

Description API to check if the phone is ringing.

Usage Examples

Check if the phone is ringing and get the call:

If (Mdm_IsRinging() == PhoneRinging)
{
Mdm_GetPhonecCall();

}

Notes

None

Mdm_SetSmsFormat

Service Name

Mdm_SetSmsFormat

Inputs UINT8 TextFormat — Possible values:
SMS_MODE_TEXT_OFF
SMS_MODE_TEXT_ON

Outputs None

Description API to set the SMS format type (text ON/OFF).

Usage Examples

Set text mode:

Mdm_SetSmsFormat(SMS_MODE_TEXT_ON);

Notes

None

Mdm_RequestSmsData

Service Name

Mdm_RequestSmsData

Inputs None
Outputs None
Description API to request the SMS data to the modem

Usage Examples

Request SMS data:

Chapter: PML (Peripheral Management Layer)

[HEY
00

Mercury System — Framework User Manual

~@ERCURY

Mdm_RequestSmsData();

Notes

None

Mdm_GetSmsData

Service Name Mdm_GetSmsData

Inputs UINT8 *MessageText — Buffer where to store the SMS text

Outputs SmsDataNotReady - SMS Data not yet ready
SmsDataReady = SMS data ready

Description API to get the SMS data from the modem.

Usage Examples -

Notes None

Mdm_SendSmsData

Service Name

Mdm_SendSmsData

Inputs UINT8 *PhoneNmb
UINT8 PhoneNmbLen
UINT8 *MsgTxt
UINT8 MsgTxtLen

Outputs None

Description APl to send an SMS.

Usage Examples

Send an SMS to the number “1234567890” with text “Ciao”:

Mdm_SendSmsData(“1234567890”, 10, “Ciao”, 4);

Notes

None

Mdm_IsSmsReceived

Service Name

Mdm_IsSmsReceived

Inputs None

Outputs SmsNotReceived = No SMS received
SmsReceived = An SMS has been received

Description API to check if an SMS has been received.

Usage Examples

Check if an SMS has been received:

If (Mdm_IsSmsReceived () == SmsReceived)

{
Mdm_RequestSmsData();

}

Notes

None

Chapter: PML (Peripheral Management Layer)

[HEY
O

~@ERCURY

Mercury System — Framework User Manual

I12C Stack

The 12C Stack is used to interface the 12C bus on Mercury system, in order to allow the
communication with Mercury slaves (SBs and EBs with on board controller). The module provides
API for transmission and reception of 12C packages.

APl list:

12cSlv_SendI2cMsg

Service Name

12cSlv_Sendl2cMsg

Inputs

UINT8* TxBuffer — Pointer to TX buffer
UINTS8 SlaveAddr — Address of the slave to transmit data to
UINT8 DatalLenght — Length of data to transmit

Outputs STD_OK = Tx OK
STD_NOT_OK - x Failed
Description APl used to send and I2c message to a specific slave device. The API returns the if

the requested Tx operation was ok or failed.

Usage Examples

Send the command 0x50 0x01 to the slave address 0x01:

12cTxBuffer[0] = 0x50;
12cTxBuffer[1] = 0x01;
12cSlv_Sendl2cMsg(12cTxBuffer,0x01,2);

Notes

None

12cSlv_Receivel2cMsg

Service Name

I2cSlv_Receivel2cMsg

Inputs

UINT8* RxBuffer— Pointer to RX buffer
UINTS8 SlaveAddr — Address of the slave to transmit data to
UINT8 DatalLenght — Length of data to transmit

Outputs STD_OK - Rx OK
STD_NOT_OK -> Rx Failed
Description APl used to receive and 12c message from a specific slave device. The API returns

the if the requested Rx operation was ok or failed.

Usage Examples

Make a read request of 5 bytes to the slave 0x01:

12cSlv_Receivel2cMsg(12cRxBuffer, 0x01, 5);

Notes

The service is completely asynchronous, the read buffer will be filled with the
read data once the 12C transaction will be completed. To check if the read

operation is complete the API 12¢Slv_I2cReadMsgSts must be used.

Chapter: PML (Peripheral Management Layer)

N
o

Mercury System — Framework User Manual

~@ERCURY

12cSlv_12cReadMsgSts

Service Name

12cSlv_I12cReadMsgSts

Inputs None

Outputs MessageNotReceived = The read operation is not completed
MessageReceived - The read operation is completed

Description APl used to check if a message has been received from the slave device.

Usage Examples

Check if the read operation is completed:

if (12cSlv_I2cReadMsgSts() == MessageReceived)
{

/* Do something - 12cRxBuffer contains the received data */

}

Notes

None

12cSlv_GetI2cSts

Service Name

12cSlv_Getl2cSts

Inputs None
Outputs I2cTxRxInProgress - Communication in progress
I2cTxRxComplete = Communication completed
Description API used to get the global 12C status (TxRxbusy or Read/Write complete).

Usage Examples

Check the global I2C Communication status:

if (12cSlv_Getl2cSts () == I12cTxRxComplete)

{
/* Do something */

}

Notes

None

Chapter: PML (Peripheral Management Layer)

N
[

Mercury System — Framework User Manual

ﬂﬁ ERCURY

UART Stack

The UART stack is not still implemented in the current release of the MSF.

N
N

Chapter: PML (Peripheral Management Layer)

—@ERCURY

Mercury System — Framework User Manual

USB

The USB module provides some basic USB communication functionalities to the Base Board. It
doesn’t have user APl in the current MSF release.

Chapter: PML (Peripheral Management Layer)

N
W

~@ERCURY

Mercury System — Framework User Manual

5. SSL (System Service Layer)

The System Services Layer (or SSL in short) is the MSF layer used to manage some basic system

services. These services are:

e The on-board user LEDs,
e The internal RTCC,
e The system power management,

e The system terminal.

The MSF has some APIs for the basic management of each one of these services/modules.

LED

The LED module is intended to provide to the user an high level management layer for the BBs on-
board LEDs. It provides API for the setting of LEDs status and handling of LEDs blink and pulse

behaviors.

API list:

Led_SetLedBlinkTime

Service Name

Led_SetLedBlinkTime

Inputs

UINT8 Led — The LED to be controlled. Possible values:
LED 1
LED 2
LED 3

UINT16 OnTimeMs — Blink on time in ms

UINT16 OffTimeMs — Blink off time in ms

Outputs

None

Description

API to set the LED blink timing. This blink timing will be applied if the LED status is
set to LED_STS_BLINK using the API Led_SetLedStatus.

Usage Examples

Set LED_1 blink timing to 50ms ON and 950ms OFF:

Led_SetLedBlinkTime(LED_1, 50, 950);

Notes

None

Led SetLedPulseTime

Service Name

Led_SetLedPulseTime

Inputs

UINTS8 Led — The LED to be controlled. Possible values:

Chapter: SSL (System Service Layer)

N
~

Mercury System — Framework User Manual

~@ERCURY

LED 1
LED 2
LED_3
UINT16 PulseTimeMs — Pulse time in ms.
Outputs None
Description API to set the LED pulse timing. This pulse timing will be applied if the LED status

is set to LED_STS_PULSEusing the API Led_SetLedStatus.

Usage Examples

Set LED 1 pulse timing to 100ms:

Led_SetLedPulseTime (LED_1, 100);

Notes

None

Led_SetLedStatus

Service Name

Led_SetLedStatus

Inputs UINT8 Led — The LED to be controlled. Possible values:
LED 1
LED 2
LED 3
LedStsType LedSts — Possible values:
LED_STS_OFF
LED_STS_ON
LED_STS_BLINK
LED_STS_PULSE
Outputs None
Description API to set the LED behavior.
Usage Examples 1. Make the LED 1 blink 50ms on and 950 ms off:

Led_SetLedBlinkTime(LED_1, 50, 950);
Led_SetlLedStatus(LED_1, LED_STS_BLINK);

2. Make the LED 1 pulse for 100ms:

Led_SetLedPulseTime (LED_1, 100);
Led_SetlLedStatus(LED_1, LED_STS_PULSE);

3. Set LED_1 status ON:

Led_SetlLedStatus(LED_1, LED_STS_ON);

Notes

None

Chapter: SSL (System Service Layer)

N
o

Mercury System — Framework User Manual

~@ERCURY

RTCM

The RTCM module is intended to provide to the user an high level layer for the management of the
internal RTCC. It provides APl to set and get RTCC date/time and to set and get RTCC alarm
date/time as well as an API to set an user action to be triggered once the RTCC alarm fires.

APl list:

Rtcm_SetRtccDate

Service Name

Rtcm_SetRtccDate

Inputs RtccDateType Date — System Date/Time
Outputs None
Description API to set the RTCC date.

Usage Examples

Set RTCC date and time:

/* Set date and time */

Rtcm_SystemDate.Year = 2017;
Rtcm_SystemDate.Month = 4;
Rtcm_SystemDate.Day = 23;
Rtcm_SystemDate.Weekday = WEEKDAY_SUNDAY;
Rtcm_SystemDate.Hour = 0;
Rtcm_SystemDate.Minute = 0;
Rtcm_SystemDate.Second = 0;
Rtcm_SetRtccDate(Rtcm_SystemDate);

Notes

None

Rtcm_GetRtccDate

Service Name

Rtcm_GetRtccDate

Inputs None
Outputs RtccDateType = System Date/Time
Description API to get the current RTCC date.

Usage Examples

Get RTCC date and time:

/* Get RTCC date and time */
Rtcm_SystemDate = Rtcm_GetRtccDate();

Notes

None

Rtcm_SetRtccAlarm

Service Name

Rtcm_SetRtccAlarm

Inputs

RtccAlarmType Alarm — RTCC alarm

Chapter: SSL (System Service Layer)

N
(@)

~@ERCURY

Mercury System — Framework User Manual

Outputs

None

Description

API to set the RTCC Alarm.

Usage Examples

Set RTCC alarm:

/* Set alarm */

Rtcm_RtccAlarm.AlrmMonth = 4;
Rtcm_RtccAlarm.AlrmDay = 23;
Rtcm_RtccAlarm.AlrmWeekday = WEEKDAY_SUNDAY;
Rtcm_RtccAlarm.AlrmHour = 0;
Rtcm_RtccAlarm.AlrmMinute = 1;
Rtcm_RtccAlarm.AlrmSecond = 0;
Rtcm_SetRtccAlarm(Rtcm_RtccAlarm);

Notes

None

Rtcm_GetRtccAlarm

Service Name

Rtcm_GetRtccAlarm

Inputs None
Outputs RtccAlarmType = RTCC Alarm
Description API to get the RTCC Alarm.

Usage Examples

Get RTCC alarm:

/* Get RTCC alarm */
Rtcm_Alarm = Rtcm_GetRtccAlarm();

Notes

None

Rtcm_SetAlarmAction

Service Name

Rtcm_SetAlarmAction

Inputs Rtcc_CallbackType Action — Callback to be triggered when the alarm fires. Must
be defined by the user.

Outputs None

Description API to set the action to be performed when the alarm fires.

Usage Examples

Registert an alarm action:

/* User alarm callback */

void Alarm (void)

{
/* Set LED on */
Led_SetLedStatus(LED_1, 1);
/* Send alarm event */
GenerateEvt(&AlarmEvent);

}

Chapter: SSL (System Service Layer)

N
~N

Mercury System — Framework User Manual

ﬂj ERCURY

/* Register alarm action */
Rtcm_SetAlarmAction(&Alarm);

Notes

None

Chapter: SSL (System Service Layer)

N
(00

~@ERCURY

Mercury System — Framework User Manual

SYSM

The SYSM module is intended to provide to the user an high level interface to handle the Base

Board power settings (mainly low power modes entry).

APl list:

Sysm_IdleMode

Service Name

Sysm_ldleMode

Inputs None
Outputs None
Description API to trigger the system IDLE mode (CPU off, peripherals on). This is the less

power saving sleep mode. It can be waken-up by:
e Any enabled interrupt
e Wdg
e Reset (HW or SW)

Usage Examples

Trigger the IDLE mode:

Sysm_IldleMode();

Notes

None

Sysm_SleepMode

Service Name

Sysm_SleepMode

Inputs None
Outputs None
Description API to trigger SLEEP mode (CPU and peripherals off). This is one of the two sleep

mode. It can be waken-up some HW source only, in particular:
e Rtccalarm
e Timer 1interrupt
e INTx interrupt
e Wdg
e Reset (HW or SW)

Usage Examples

Trigger the SLEEP mode:

Sysm_SleepMode ();

Notes

None

Sysm_DeepSleepMode

Service Name

Sysm_DeepSleepMode

Inputs

None

Chapter: SSL (System Service Layer)

\o)

~@ERCURY

Mercury System — Framework User Manual

Outputs

None

Description

API to trigger the DEEP SLEEP mode (CPU and peripherals off). This is the highes
power saving sleep mode. It can be waken-up some HW source only, in
particular:

e Rtccalarm

e INTO interrupt

e DsWdg

e Reset (HW only)

Usage Examples

Trigger the DEEP SLEEP mode:

Sysm_DeepSleepMode();

Notes

None

Chapter: SSL (System Service Layer)

w
o

-fﬂfnz RCURY

Mercury System — Framework User Manual

TERM

The TERM module provides some basic terminal functionalities to the Base Board. It doesn’t have
user APl in the current MSF release.

Chapter: SSL (System Service Layer)

W
=

—@ERCURY

Mercury System — Framework User Manual

6. OSL (Operative System Layer)

The MSF is based on a simple, non-preemptive real-time Operative System (also called Mercury
0S), which provides some basic services like scheduling of the various framework and application
main tasks, events, SW timers, alarms, etc. These basic functionalities are available for the user
too,

OS Services

The OS Services Module (os_ser) provides some basic APIs for events generation and reception.
These two APIs relies on user-defined global variables of type EventStructureType* and provides
an output of EventStatusType. For any event that the user wants to use a global variable of type
EventStructureType must be declared. Then a corresponding event can be generated and received
using the proper GenerateEvt or ReceiveEvt API.

API list:
GenerateEvt
Service Name GenerateEvt
Inputs EventStructureType *Event — Pointer to the Event global variable
Outputs EventStatusType — Possible values:
Eventldle
EventReceived
EventSent
Description API to generate an event. The API takes an event variable passed by reference as
an input. The same event could be received using the ReceiveEvt API.
Usage Examples Generation of an user event:
EventStructureType MyEvent;
GenerateEvt(&MyEvent);
Notes None
ReceiveEvt
Service Name ReceiveEvt
Inputs EventStructureType *Event — Pointer to the Event global variable
Outputs EventStatusType — Possible values:
Eventldle
EventReceived
EventSent
Description API to receive an event. The API takes an event variable passed by reference as
an input. The event had to be previously generated by a GenerateEvt API.

Chapter: OSL (Operative System Layer)

N

Mercury System — Framework User Manual

—@ERCURY

Usage Examples

Reception of an user event:
EventStructureType MyEvent;

If (ReceiveEvt(&MyEvent))

{
/* Do something */

}

Notes

None

Chapter: OSL (Operative System Layer)

w

Mercury System — Framework User Manual

~@ERCURY

OS Timers

The Mercury OS provides some basic virtual timing services with a maximum resolution of 1ms, to

be used for simple timing measurement, non-blocking SW delays, etc.

APl list:

OsTmr_StartTimer

Service Name OsTmr_StartTimer
Inputs SwTimerType *Timer
UINT32 Timeout
Outputs None
Description API to start a software timer.
Usage Examples Start a SW timer with timeout of 10s:

SwTimerType MyTimer;

OsTmr_StartTimer(&MyTimer, 10000);

Notes None

OsTmr_StopTimer

Service Name OsTmr_StopTimer

Inputs SwTimerType *Timer

Outputs None

Description API to stop a software timer.

Usage Examples Stop a previously started SW Timer:

OsTmr_StopTimer(&MyTimer);

Notes None
OsTmr_Wait
Service Name OsTmr_Wait
Inputs SwTimerType *WaitTimer
UINT32 DelayMs
Outputs DelayNotExpired = The set delay is still not expired

DelayExpired = The set delay is expired

Description APl that implement a non-blocking delay function. It waits for the defined

amount of time (in ms) passed as parameter.

Usage Examples Set a LED on for 2s after an initial delay of 1s (in state machine fashion)

Chapter: OSL (Operative System Layer)

w
S

Mercury System — Framework User Manual

~@ERCURY

/* Inside a periodically called task, with State static initialized to 0 */

switch(State)
{
case O:
if (OsTmr_Wait(&WaitTimer, 1000))
{
State =1,
Led_SetlLedStatus(LED_1, 1);

}
break;

case 1:
if (OsTmr_Wait(&WaitTimer, 2000))
{
State = 2;
Led_SetlLedStatus(LED 1, 0);
}

break;

case 2:
break;

}

Notes None

OsTmr_GetTimerStatus

Service Name OsTmr_GetTimerStatus
Inputs SwTimerType *Timer
Outputs SwTmrNotExpired—> The sw timer is still not expired

SwTimerExpired=> The sw timer is expired
SwTimerDisabled = The sw timer is disabled (stopped)

Description API that checks the software timer status.

Usage Examples Check if a SW timer is expired:

/* Check if expired */
If (OsTmr_GetTimerStatus(&MyTimer) == SwTimerExpired)

{
/* Do something */

}

Notes None

OsTmr_GetElapsedTime

Service Name ‘ OsTmr_GetElapsedTime

W
Ul ‘ Chapter: OSL (Operative System Layer)

Mercury System — Framework User Manual

~@ERCURY

Inputs SwTimerType *Timer
Outputs UINT32 > Elapsed time in ms
Description API that gets the elapsed time since the sw timer started.

Usage Examples

Get elapsed time:
UINT32 ElapsedTimeMs;

/* Get elapsed time */
ElapsedTimeMs = OsTmr_GetElapsedTime(&MyTimer);

Notes

None

OsTmr_GetRemainingTime

Service Name

OsTmr_GetRemainingTime

Inputs SwTimerType *Timer
Outputs UINT32 - Remaining time in ms
Description API that gets the remaining time before a sw timer expires.

Usage Examples

Get remaining time:
UINT32 RemainingTimeMs;

/* Get remaining time */
RemainingTimeMs = OsTmr_GetRemainingTime (&MyTimer);

Notes

None

Chapter: OSL (Operative System Layer)

w
@)}

~@ERCURY

Mercury System — Framework User Manual

OS Alarms

Besides SW timers, the Mercury OS provides also an alarm module, that can set alarms which,
once fired, could trigger the execution of a user callback. The callback must be defined by the user
and it must be a void-void function.

The function which process the alarm will check if the function pointer passed is actually pointing
to something, in order to avoid unexpected crashes of the system.

The maximum allowed number of alarms is a configuration parameter of the alarm module
(OS_ALARM_NUMBER), and is statically defined at compile time. Then the desired alarm to
address is identified by an ID (basically the position of the alarm structure inside the alarm list).

OsAlrm_SetOsAlarm

Service Name OsAlrm_SetOsAlarm

Inputs UINT16 OsAlarmld — ID of the alarm (from 0 to OS_ALARM_NUMBER)
UINT32 OsAlarmTimeout — Timeout in ms before the alarm fires
OsAlarmCallbackType AlarmCallback — User callback executed once the alarm

fires

Outputs None

Description API to set an OS alarm. Once the alarm timeout expires the user callback will be
automatically executed.

Usage Examples Set the alarm of ID 1 with timeout of 5s and execution of the callback MyAlrmCbk

once the alarm fires:

/* User callback implementation */
void MyAlrmCbk (void)
{

/* My callback implementation */

}

/* Alarm set */
OsAlrm_SetOsAlarm(1, 5000, MyAlrmCbk);

Notes None

OsAlrm_ClearOsAlarm

Service Name OsAlrm_ClearOsAlarm

Inputs UINT16 OsAlarmld — ID of the alarm (from 0 to OS_ALARM_NUMBER)
Outputs None

Description API to clear an OS alarm.

Usage Examples OS Alarm 1 cancellation:

Chapter: OSL (Operative System Layer)

N

Mercury System — Framework User Manual

ﬂﬁ ERCURY

OsAlrm_ClearOsAlarm(1);

Notes

None

Chapter: OSL (Operative System Layer)

w
00

