

Set due lampade con attacco G4 e LED bianchi - 12V

Prezzo: 4.10 €

Tasse: 0.90 €

Prezzo totale (con tasse): 5.00 €

Set composto da 2 lampade dotate di 9 LED bianchi superluminosi e attacco G4. Alimentazione: 12 Vac / Vdc, consumo 1,8 W. Oltre 30.000 ore di vita. Dimensioni: Ø 25 x 1 mm. Non emette UV e IR, niente mercurio e minori emissioni di CO2. Ideale per illuminazione generale, per vetrine negozi, hotel, show room ecc.

Specifiche tecniche

• Attacco: G4

• Alimentazione: 12 Vac / Vdc

• Consumo: 1,8 W

• Durata media: 30.000 ore

• Colore: bianco

Temperatura colore: 6500 K
Flusso luminoso: 90 lumen
Angolo del fascio: 140°

• Numero di LED (SMD): 9 modello 5050

• Dimensioni: Ø 25 x 1 mm

Candele, lumen e lux: cosa guardare?

Quando vogliamo confrontare le caratteristiche di due lampade, spesso siamo in difficoltà perché non sappiamo come confrontare i dati forniti: qualcuno, infatti, indica le candele, qualcun altro i lumen. Proviamo a fare un po' di chiarezza. Tutte le sorgenti luminose e quindi anche le lampadine sono caratterizzate da un'intensità luminosa (I), che viene espressa in candele (cd) o in millicandele (mcd, pari a 1 millesimo di candela); nel Sistema Internazionale di misura, la candela è l'intensità di una sorgente di dimensioni infinitesime non assorbente la luce che genera (corpo nero) avente superficie di 1/6 x 10-5 m² e posta alla temperatura di solidificazione del platino, rilevata in una direzione perpendicolare alla superficie stessa e in un ambiente alla pressione di 101,325 pascal. Quando si parla di candele, si intende perciò l'intensità luminosa, che è la luce propria emessa dalla lampada. Un altro parametro che indica quanta luce genera una sorgente è il flusso luminoso (?), che si esprime in lumen (lm). Queste due grandezze sono legati dal fatto che il flusso luminoso è la densità raggiunta dall'intensità luminosa in uno spazio solido; per l'esattezza, un lumen è il flusso luminoso prodotto da una fonte dell'intensità di una candela in un angolo solido ampio 1 steradiante. Lo steradiante è l'angolo solido ampio 360/6,28° (rapporto tra la circonferenza e il raggio di un cerchio) in tutte le direzioni, ossia 57,32 gradi. Dunque, il flusso luminoso (lumen) è dato dal prodotto: ? = I x ? dove ? è l'angolo di emissione della luce o di irraggiamento, espresso in steradianti, che si suppone sia uguale in tutte le direzioni (si ipotizza che la lampada emetta un cono di luce). Dunque, per confrontare due lampadine conoscendo di una le candele e dell'altra i lumen, deve essere noto l'angolo di emissione della luce. Noto questo in gradi sessagesimali, si ricava? in steradianti dividendolo per 57,32; ad esempio una lampada che ha come angolo di emissione 45° ha un angolo di 0,785 steradianti. Confrontiamo, ad esempio, una lampada da 10.000 mcd che emette su un angolo di 45 gradi ed una della quale sappiamo che ha un flusso luminoso di 10 lumen; dato che 45° è pari a 0,785 steradianti, la prima determina un flusso luminoso di: ? = 10 cd x 0.785 sr = 7.85 lm.

Quindi la prima è meno valida della seconda. Con le stesse formule si possono ricavare le grandezze non indicate dai costruttori; per esempio, se di una lampadina sappiamo che genera 8 lumen ed emette su un angolo di 60° (1,047 steradianti) possiamo ricavare l'intensità luminosa (I) in candele: I = ? /? = 8/1,047 = 7,64 cd.

Ora confrontiamo una lampadina dell'intensità di 12 candele e un'altra che ha un flusso luminoso di 11 lumen e un angolo di emissione di 60° (1,047 sr); determiniamo l'intensità in candele della seconda lampada: I = ? /? = 11/1,047 = 10,5 cd. Stavolta la seconda lampada è meno performante della prima. Dei LED i costruttori definiscono l'intensità luminosa e l'angolo di irraggiamento o apertura, espresso in gradi sessagesimali. Dato che la lente dei diodi normalmente determina un'emissione luminosa conica, è facile ricavare il flusso luminoso. Ad esempio, un LED che emette 2.000 mcd su un angolo di 50° (0,872 sr), presenta un flusso luminoso di 1,744 lumen.

Le varie fonti di illuminazione artificiale

Per i LED bianchi, la durata si riferisce ai soli diodi; diventa inferiore per le lampade a LED, perché bisogna tenere conto del tempo di vita medio del circuito di controllo. Quanto alla resa, è quella tipica della sola lampada o del solo LED: non si considerano le perdite nei circuiti alimentatori, che affliggono le lampade a neon, quelle a vapori e i LED.

Tipo di lampada	Intensità Iuminosa max (cd)	Resa (lumen/watt)	Durata (ore)	
A incandescenza tradizionale	40÷240	8÷15	1.000÷1.500	
Alogena	28.000	18÷25	2.000÷3.000	
A neon	20÷900	40÷100	5.000÷8.000	
A vapori di mercurio	30.000	80÷100	10.000÷12.000	
A vapori di sodio	50.000	120÷200	5.000÷6.000	
LED bianchi	5÷200	70÷150	30.000÷120.000	

La tabella qui sotto illustra l'efficienza delle singole lampadine e quella reale, desunta considerando la perdita di potenza nei dispositivi occorrenti ad accenderle. Come si vede, la resa effettiva più alta ce l'hanno il LED e le lampade a vapori di sodio a bassa pressione. Per la corretta interpretazione dei dati considerate che: la resa della sorgente (lm/W) è l'efficienza della lampada in sè - l'efficienza della sorgente elettrica (%) definisce le perdite nell'alimentatore - l'efficienza del corpo radiante (%) considera le perdite del sistema ottico usato per dirigere il fascio luminoso, sistema che rende tra il 30 e il 50% nelle lampadine comuni (che irraggiano in quasi tutte le direzioni) contro il 95% dei LED, che hanno un fascio luminoso molto direzionale già al punto di emissione - l'efficienza totale (lm/W) è ottenuta moltiplicando la resa per l'efficienza della sorgente elettrica per l'efficienza del corpo irradiante. Ci si può fare un'idea del significato dei numeri riportati nella tabella provando a calcolare quale sia la potenza elettrica consumata per ottenere un certo valore di flusso luminoso, ad esempio di 1.000 lumen: usando una lampada a filamento, servono almeno 133 watt, che divengono 80 W per le alogene; con le lampade a neon e a vapori di mercurio la potenza richiesta scende a circa 16,6 W e si abbassa a un minimo di 8,26 W con le lampade a vapori di sodio a bassa pressione. Circa 8,3 W è la potenza minima occorrente utilizzando sistemi a LED. Rispetto a una lampada classica, il risparmio energetico è di circa il 93 %. Ecco perchè per i sistemi di illuminazione a LED si prospetta un futuro decisamente ...luminoso!

Tipo di lampada	Resa (Im/watt)	Efficienza dell'alimentatore (%)	Efficienza del corpo irradiante (%)	Efficienza complessiva (Im/watt)
A incandescenza tradizionale	8÷15	Non serve alimentatore	30÷50	2,4÷7,5
Alogena	18÷25	Non serve alimentatore	30÷50	5,4÷12,5
A neon	40+100	80÷87	60÷70	19,2+60,9
A vapori di mercurio	80+100	80+87	60+70	38,4+60,9
A vapori di sodio	120÷200	80+87	60+70	57,6÷121,8
LED bianchi	70+150	85	95	50,6÷121,1